Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors.
نویسندگان
چکیده
Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.
منابع مشابه
Novel patterning of nano-bioceramics: template-assisted electrohydrodynamic atomization spraying
The ability to create patterns of bioactive nanomaterials particularly on metallic and other types of implant surfaces is a crucial feature in influencing cell response, adhesion and growth. In this report, we uncover and elucidate a novel method that allows the easy deposition of a wide variety of predetermined topographical geometries of nanoparticles of a bioactive material on both metallic ...
متن کاملGold catalytic Growth of Germanium Nanowires by chemical vapour deposition method
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
متن کاملNanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling
In this letter, we describe the on-demand dispensing of single liquid droplets with volumes down to a few attoliters and submicrometric spacing. This dispensing is achieved using a standard atomic force microscope probe, with a 200 nm aperture at the tip apex, opened by focused ion beam milling. The inside of the tip is used as reservoir for the liquid. This maskless dispensing, realized in amb...
متن کاملHigh-resolution electrohydrodynamic jet printing.
Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspec...
متن کاملCharacterizing emulsions by observation of single droplet collisions--attoliter electrochemical reactors.
We report an electrochemical study of the collisions of single droplets in an emulsion by two methods. In the first method, an electroactive redox species, for example, ferrocene, inside a toluene-in-water emulsion droplet (but not in the continuous phase) is measured by chronoamperometry during a collision with an ultramicroelectrode (UME). Here, a blip or spike type of collision signal is obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 21 شماره
صفحات -
تاریخ انتشار 2015